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Abstract. Parallel computing systems with multiple processing elements
have the ability to run a set of di�erent tasks at the same time. To
achieve such a parallelism, these systems use typically an algorithm for
task planning and another algorithm for task assignment. The planner
algorithm must solve the problem of how many and which tasks re-
maining in a queue must be executed, how many processors should be
used to execute the selected tasks, and which tasks must be executed
�rst; meanwhile, the assignment algorithm must determine what free
processors in a mesh will be used to execute the selected tasks. The
objectives of both algorithms are maximizing the use of all processors
and the adjacency of the processors assigned to a same task, as well
as minimizing the waiting times of the tasks in a queue. Nonetheless,
in the purpose of maximizing and minimizing all the objectives at the
same time, several con�icts may occur among them, causing degrada-
tion in the performance of a parallel computing system. In this paper,
it is presented an analysis of how the objectives in the task planning
and assignment may con�ict, speci�cally in multicomputer systems. The
analysis is carried out by using a multi-objective optimization algorithm,
through which each objective is evaluated to determine its e�ect in the
performance of a parallel computing system. With the results of the
evaluated objectives, a scale of priorities is proposed.
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1 Introduction

Multicomputer systems with architectural meshes, interconnection topologies in
2D and 3D, denominated multicomputers in 2D or 3D mesh for commercial
purposes and researching, have been the most common parallel systems due
to their simplicity, scalability, structural regularity and simple implementation
[1,17,3] in research and industry environments.

Various parallel computers commercial and experimental, such as the IBM
BlueGene/L [4] and the Intel Paragon [5] have been built based on these two
architectures. Some of the commercial multicomputer systems are Multiple In-
struction Multiple Data (MIMD), with architectures that permit processor sub
mesh partitions, and have the advantage of supporting multiple processes. Each
of which can be assigned to an independent processor sub mesh for execution.
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In an MIMD mesh, that supports multiple users, a task must be assigned to
a free processor submesh, that corresponds to the size required of the operating
system. The tasks solicit di�erent computing requirements, and processor sub-
meshes with di�erent sizes within the mesh. When a task is �nished executing,
the submesh that it occupied is freed up for the next assignment process, this
is known as consecutive assignment. The task assignment problem in multi-
computer systems can be approached on two levels: on a task level and on a
programming level [1,8]. For this research the task level assignment is used.

The main problem with e�cient utilization of the processors in dynamic mesh
multiuser systems, is the planning of computing resources [6,7,8]. Mesh resource
planning, through hardware partitioning involves two components: task planning
and a task assignment to the mesh. The function of task assignment, is to choose
the next task or tasks for the queue that will be assigned to a free sub mesh to
be executed. The function of submesh assignment, is to localize free submeshes
that are to be assigned to the selected tasks for planning [6]. In �gure 1, where
the busy processors are shown with dark circles and the free processors in white,
we can see a joining of 6 tasks in the queue to be ingresses into a 2D mesh with
a processor size 8× 8.
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Fig. 1. System structure for task execution in a multi-computer 2D mesh system.

In task assignment for mesh processors there are two di�erent methods:
the continuous assignment method, in which the assignments are carried out
only in adjacent processors within the mesh, and the non continuous assignment
method which allows tasks to be assigned to processors, that are not found to be
adjacent to the mesh. In the carrying out of planning and assignment functions,
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independent from the type of assignment that is to be used, the following 6
criteria are aimed to be minimized or maximized [9]: system utilization, processor
performance, average stationary time, wait time, remain time, result coe�cient
and the performance coe�cient. These objectives, upon being evaluated with
task loads in the system, generally result in counter-position, due to the fact
that bettering one result in turn worsens another. Thus provoking the parallel
system into being highly e�cient under one criteria, and in others having e�cient
results far under the established norms [11,12].

In [13], �ve of these six objectives are evaluated through an Evolutionary Dis-
tribution Algorithm (EDA), especially being the case with the Uni�ed Marginal
Distribution Algorithm (UMDA). The object evaluation in [13], is meant to
obtain the assignment which is best adjusted, to certain threshold values that are
established as optimum values in the planning and assignment tasks. However,
with the individualized evaluation process, the results are contrasted producing
a multi-objective problem.

An example of the aforementioned is presented when the adjacency between
processors assigned to tasks is maximized, thus making that the time in which
the tasks remain, and wait in the queue becomes maximized, encouraging degra-
dation in response times that the parallel system authorizes to the users.

In [10], a multi-objective problem is de�ned as, that in which involves the
optimizing of a number of objectives simultaneously. With these types of prob-
lems, the objectives are in con�ict with each other, the optimal solution of each
function that corresponds with each objective (function objective) is di�erent
from the rest. In solving these problems, with or without the presence of con-
straints, it results in a set of interchangeable optimal solutions, popularly known
as Pareto optimal solutions [10]. Due to the multiplicity in solutions, these prob-
lems were proposed to be solved appropriately using Evolutionary Optimization
Algorithms (EOA), those in which use a population focus in the search engine
procedure. Evolutionary Optimization Algorithms, use a population based ap-
proach, in which more than one solution is involved in an iteration, and evolve a
new population of solutions at each iteration [10]. Multi-objective optimization
problems give rise to a set of solutions, which require further processing to
achieve a single main solution. To perform the �rst task, a natural proposition is
to use an EOA, because the use of a population in one iteration helps an EOA to
simultaneously �nd multiple non-dominated solutions, representing an exchange
between objectives in a single simulation run. So considering that planning and
allocating tasks in a parallel system, is a multi-objective problem, in this paper,
�ve of the con�icting objectives in the planning and allocation of tasks on a
system multicomputers are raised (de�ned below).

The objectives that the algorithm for scheduling must cover during imple-
mentation and proposed in [13] are:

1. Reducing the remain time of the tasks in the queue.

2. Decrease task starvation ,which would avoid discrimination in the allocation
of tasks that require a lot of processors (great tasks). This is caused because
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the tasks that require a small amount of processors (small jobs), are being
continuously assigned.

The task allocation algorithm during its execution, is responsible for covering
the following objectives proposed in [13]:

1. Reduce the number of assignments to the mesh of processors performing the
tasks allocation algorithm.

2. Maximizing the use of the mesh processors, i.e., decrease the percentage of
processors that remain free after the allocation algorithm places, one or more
tasks in the mesh of processors (external fragmentation) [11].

3. Maximize contiguity between processors (assign the set of free allocate pro-
cessors as close together as possible), to minimize the distance in the com-
munication path, and avoid interference between them [12]; this is done in
order to get a good parallel algorithm to decrease communication time, and
maximize processing time [12].

The selection of the �ve objectives presented above obeys the completion of
a state of the art review, of the research work related to di�erent techniques or
proposed planning and task allocation methods, seeking, isolated, to optimize
one or more of the six criteria or objectives for planning and tasking.

In this paper, we address the problem of planning and allocation of tasks to
a mesh of processors as a multiobjective problem, using for this the evolutionary
algorithm outlined in [13] and explained in this section: UMDA algorithms (from
this research), evaluating each objective function for analysis of the results, and
determine which are the determinants or is the better decision to assign, and
schedule them in a system of multicomputers objectives.

For the completion of the objective contrast analysis, a multicomputer Liebres
InTELigentes system for teaching programming, systems of high performance
computing in higher education institutions, [14] was used to perform the analysis
of the contrast between the objectives. The results of each of the objective
functions evaluated, obtained with di�erent workloads in the queue of the target
system, and with processors mesh sizes 4 × 4, 8 × 8 and 16 × 16. When the
values of the objective functions are similar, a priority scale is established for
the proposed set of objectives, in this way, a successive application of this scale
takes places until the best allocation is found, as set forth in [13].

This research is divided as follows: a section about previous works, where
the research conducted in the area of the allocation of processors is presented,
a section of basic concepts where the terms related to a 2D architecture mesh
are de�ned; a section titled UMDA algorithm where performance and features of
this algorithm are proposed, as well as it is presented in [13] and how it adapts
to this research this algorithm. Processes for the analysis of the contrast between
the objectives, the planning and allocation of tasks in a 2D mesh and contrast
of the objectives during the planning and allocation of tasks, is explained by a
set of examples and how the objectives are opposed, during the planning and
allocation of tasks on a system multicomputers. In the section of experiments,
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tests for the analysis of con�icting goals and resolve the opposition that occurs
in the goals set during the planning, and allocation of tasks in the screen are
explained. In the last section, the conclusions are drawn from the analysis and
experiments conducted are presented.

2 Previous work

Several investigations have been conducted to develop strategies for assignments,
in both contiguous and non-contiguous parallel computing systems. This section
describes, for reasons of space, only the most signi�cant non-contiguous allo-
cation techniques, that have been developed within di�erent researches. It has
been possible to extract the characteristics of the methods, and de�ne the scale
priorities of the di�erent objectives proposed in this paper, which seek to become
maximized or minimized.

The �rst adjustment technique FF (First Fit) [15], through the pursuit of free
submesh, and determining the sub-mesh that best �ts the application, seeks to
�nd the maximum adjacency between processors to lower latency communication
between tasks. In the paging technique [15], the iterative process of division
of the sub-mesh in partitions of equal size 2i, where i is a positive integer
representing the index of the page parameter, seeks to assign a task to a selected
page, allowing the job to run with a total of processors avoiding interference
adjacency messages by disjoint processors. MBS [15], a process of division of
the mesh to obtain overlapped square submeshes with potency lengths of 2,
recursively will decrease to be suited to a request, this causes the work to be
embedded on a set of 100% adjacent processors. In ANCA [16], it �rst tries to
assign the task to a sub-mesh of adjoining processor, if it fails, the application is
partitioned into sub-partitions of equal size recursively, until it is able to assign
subpartitions in locations available to the mesh. In the Random strategy [15],
tasks are assigned to the mesh depending on a random number and all free
processors are considered in the allocation, with this type of arbitrary allocation
use of all available processors and the elimination of any kind of fragmentation
that can occur are sought, however, a high communication interference occurs
between tasks.

Newer techniques have similar connotations to the original proposals, through
the use of an initial strategy to assign the tasks, but when the allocation is not
able to be done, a second strategy that replaces the �rst to achieve the objective
of allocation is activated. Examples of such techniques, include search strategy
and friendly Multiple Adaptive (Adaptive Scan and Multiple Buddy AS & MB)
[15], Allocation Contiguous No Quick (QNA for its acronym in English Quick
Non-Contiguous Allocation) [18], and strategy allocation proposed in [17]. In
AS & MBS, it seeks to assign the task to a sub-grid of equal size as the one
requested, if it does not exist, the MBS strategy is activated to perform the
division process of requirements [19].

The strategy proposed in citeBani, the FF method is used in conjunction
with the BF method, as follows: if a task requests a sub-mesh sized 4 × 4 and
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the application can not be granted, the request size is reduced to a multiple
of 2, for this case 2 × 2 mesh size requested, and so on until the request has
the minimum number of processors, in this case 1× 1. When the �rst technical
fault occurs, a second technique is the BF is activated through this technique, a
search is performed in free submeshes that best �t it, i.e., with the exact number
of processors that the task requires [20]. In fact, 2 alternative techniques are
applied within the method of allocation to improve the condition of contiguity,
by maintaining a good level of closeness between processors, to run the same
task and reduce communication latency that is caused by no contiguity between
the processors.

3 Basic Concepts

The proposed system is of multicomputers connected in a 2D mesh with a job
queue waiting for admission to the mesh, and allowances are established as a
dynamic quadratic assignment. The following de�nitions formally describe a
system of this type.

De�nition 1. An n-dimensional mesh has k0 × k1 × ...× kn−2 × kn−1 nodes,
where ki is the number of nodes along the i − th dimension and ki ≥ 2. Each
node is identi�ed by n coordinates: 0(a), 1(a), ..., n− 2(a), n− 1(a), where

0 ≤ i(a) < kifor0 ≤ i < n.

Two nodes a and b are neighbors only if i(a) = i(b) for all dimensions except
for a dimension j, where j(b) = j(a)±1. Each node in a mesh refers to a processor
and two neighbors that are connected by a direct communication link.

De�nition 2. A 2D mesh de�nition, which is referenced as M(W,L) consists
of W × L processors, where W is the width of the mesh and L is the height of
the mesh. Each processor is denoted by a pair of coordinates (x, y), where

0 ≤ x < Wand0 ≤ y < L.

A processor is connected by a bidirectional communication link to each of its
neighbors. For each 2D mesh = Pij .

De�nition 3. In a 2D mesh,M(W,L), a sub-mesh: S(w, l) is a two-dimensional
mesh belonging to M(W,L) with a width w and a height l, where

0 < w ≤ wand0 < l ≤ L,

and S(w, l) are represented by coordinates (x, y, x′, y′), where (x, y) is the lower
left corner of the sub- mesh, and (x′, y′) is the upper right corner. The node in
the lower left corner is called the base node of the sub-mesh and the upper right
corner is the end node. In this case w = x′ − x+ 1 and l = y′ − y + 1. The size
of S(w, l) is: wxl processors.

De�nition 4. In a 2D mesh M(W,L), a sub-mesh available S(w, l) is a sub-
mesh that meets the conditions: w ≥ β ≥ α assuming that the allocation of
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S(α, β) required where the allocation refers to select a set of processors to an
arriving task.

De�nition 5. Let ϑ be a set of system tasks, such that ϑ = J1, J2, . . . , Jn,
where n is the number of tasks at time t y ϑk a set of sub-tasks of the task k
where: ϑk = jk1, jk2, . . . , jkf(k) y f(k) is the total number of sub-tasks of the
task j. For each task each task j and each sub-task f(k) ∈ j a processor mi ∈ P
is had that should run j and sub-task jkf (k), consuming an uninterrupted time
of t ∈ N.

De�nition 6. Given two matrices of size n × n: a �ow matrix F whose (i, j)
elements represent �ows between i and j tasks and an array of distances D whose
(i, j) represent the distance between sites i and j. An assignment by the vector
p, which is a permutation of the numbers 1, 2, ..., n. p(j) is where the task j is
assigned. Thus, the quadratic assignments can be written as:

minp ∈
∑n
i=1

∑n
i=1 fijdp(i)p(j).

De�nition 7. An optimization problem, is one whose solution involves �nding
a set of candidate alternative solutions that best meet objectives. Formally, the
problem consists of the solution space S and objective function f. Solving the
optimization problem (S, f) it is to determine an optimal solution, namely, a
feasible solution x∗ ∈ S such that f(x∗) ≤ f(x) for any x ∈ S. Alternative
solutions can be expressed by assigning values to some �nite set of variables
X = Xi : i = 1, 2, ..., n. If Ui is denoted the domain or universe (set of possible
values) of each of these n variables, the problem is to select each variable Xi

domain Ui value xi assigned that, subject to certain restrictions, optimizes an
objective function f. The universe of solutions is identi�ed with the set:

U = x = (xi : i = 1, 2, . . . , n) : xi ∈ Ui.

The problem constraints reduce the universe of solutions to a subset of S ⊆ U
solutions, called feasible space.

De�nition 8. Utilization. It is de�ned as the fraction of time in which the
system was used. And it is given by:

UG =WG/(CG ∗mG),

where WG is the amount of work the system, CG is the end time of execution of
all tasks in the system, mG is the total number of processors in the system.

De�nition 9. Processing Performance (throughput). The number of tasks
completed per unit of time in the system, and it is given by:

n/CG,

where n is the total number of tasks in the system.
De�nition 10. Mean turnaround time. The average time it takes for all tasks

upon entering the queue until their execution is ended. It is calculated as:

1
n

∑n
j=1 t

j
t,
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where t
j
t = cj − rj , cj is the time of completion of the task and rj is the delivery

time of the task j.
De�nition 11. Waiting time. It is de�ned as the average waiting time before

starting the task execution. It is calculated as:

1
n

∑n
j=1 t

j
w,

where

tjw = tjs−rj ,

where tjs is the start time of execution of the task j.
De�nition 12. Coe�cient response (response rate). It is de�ned as the average

of the response factors of all tasks. It is de�ned as:

1
n

∑n
j=1(t

j
w+P j)/P j ,

where P j is the runtime and tjw is the waiting time of the task j.
De�nition 13. Competitive ratio. A measure of system performance de�ned

as:

p = cg/cLB ,

where cg is the time of completion and cLB is the minimum time to complete
tasks, calculated as: maxwG/mg, t

max
g , where tmax

g the maximum runtime of the
n tasks.

4 The UMDA

The EDA (Estimation of Distribution Algorithms), are evolutionary algorithms
that use a collection of candidate solutions for accomplishing search paths avoid-
ing local minimums [21,22]. These algorithms use the estimation and simulation
of the joint probability distribution, as a mechanism of evolution, instead of
directly manipulating the individuals that represent solutions to the problem.
EDA algorithm starts randomly generating a population of individuals that
represent solutions to the problem. Three types of operations are performed
iteratively on the population [21,22]. The �rst type of operation is the generation
of a subset of the best individuals in the population. Secondly, a learning process
from a probability distribution model is made from selected individuals. Third,
new individuals are generated by simulating model the distribution obtained.
The algorithm stops when a certain number of generations are reached or when
performance fails to improve signi�cantly.

To estimate in each generation the distribution of joint probability, from
selected individuals, we use the algorithm of the univariate marginal distribution
(UMDA by its acronym, Univariate Marginal Distribution Algorithm). Thus, the
joint probability distribution is factored as the product of independent univariate
distributions [21,22], that is:

30

A. Velarde M.

Research in Computing Science 104 (2015)



pl(x) = p(x|DSe
l-1) =

∏n
i=1 pl(xi).

Each univariate probability distribution is estimated from marginal frequen-
cies:

pl(xi) =
∑n

j=1 δj(Xi=xi|DSe

l-1
)

N ,

where

δ(Xi = xi|DSe
l-1) =

{
0 if is the i− th DSe

l-1, Xi = xi
1 in other case

}
.

The pseudo code for UMDA proposed in [21,22] is shown in table 1.

Table 1. The pseudo code for UMDA [21,22]

D0 ← Generate M individuals (the initial population) random
Repeat for l = 1, 2, .. until stop criteria

D
Se

l-1 ← select N ≤M Individuals of Dl−1 according to the selection method:

pl(x) = p(x|DSe

l-1) =
∏

n

i=1
pl(xi)

∏
n

i=1

∑n
j=1 δj(Xi=xi|DSe

l-1
)

N
←

Estimate the joint probability distribution Dl

Sample M individuals (the new population) of Pl(x)

In this paper, the application of UMDA evolutionary algorithm is carried out
as follows:

1. A set of tasks is dynamically extracted from the queue that �t in the free
submeshes, this set of tasks represents a possible assignment (individual);
this process is repeated until n number of individuals (user-de�ned), that
constitute a population.

2. For each individual in the population, the �ve objectives are evaluated to
determine the subset of assignments (subset of the best individuals) that
show results closest to maximization or minimization established for each
objective function.

3. The probability distribution model learning process, is produced from se-
lected individuals representing the best assignments to the mesh of proces-
sors.

4. A new generation of individuals occurs by simulating the distribution model
obtained in the previous step.

5. An algorithm stop mechanism is activated when minimizing or maximizing
of the objective functions.

During the process of evaluating each target for each of the individuals, the
contrasts are shown in the results, due to the improved results from a function
other objective result worsen. The following section explains through examples
how the objectives are opposed.
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5 Process for the Analysis of the Contrast between the

Objectives of the Planning and Allocation of Tasks in a

2D mesh

To make the contrast analysis of the 5 goals, extracted from research and previ-
ously discussed in previous sections, �rst, the results were considered [12,13] of
the trials of the UMDA that evaluates each target separately. Second, additional
trials were conducted of the same algorithm to determine the contrast of each of
the targets within the same group. The formal approach of the found contrasts
are detailed in the following section. Upon completion of the experiments, and
based on the results a scale of priorities is formed, that in which is used in this
research as a determiner to �nd the best assignment of tasks to the processor
mesh.

5.1 Opposition of the Objectives during Planning and Allocation of

Tasks

In this section, the found contrasts are explained through a set of examples
between the objectives that are pursued to meet the optimal utilization of the
processors of the mesh. A formal approach to them is also performed.

Objectives 1 and 2, which seek to minimize the number of assignments to
the mesh of processors, to minimize the time that jobs remain in the queue,
is at odds with the objectives of minimizing the use of processors in the mesh
and minimizing starvation of tasks. To illustrate how these four objectives are
opposed, consider that at time t, the allocator 29 reports free processors (as
shown in �gure 1), with this information the scheduler determines that the set
of the 5 tasks T0, T1, T2, T3 and T4 are candidates to �ll 21 processors in the
mesh, or assign the task requiring 26 T5 and T4 processors requesting task 3.
Assign the set of 5 tasks releases the same number of positions in the queue for
the entry of new tasks, thus reducing the number of accesses to the queue to �nd
more tasks, this allows a greater number of users and tasks to be served and the
waiting time of tasks in the head of the queue is decreased; but in opposition
to this, an external fragmentation of 8 processors is generated and starvation
in a cycle of tasks increases, upon not being served a task that requires a large
number of processors.

Now, if the T4 and T5 tasks assigned do not produce starvation nor external
fragmentation, a smaller number of tasks can be accepted in the queue, so the
number of assignments to the screen increases and therefore so do the time tasks
must wait to enter the mesh of processors.

Objective 3, which seeks to maximize the use of the processors in the mesh,
contrasts with objective 5, which maximizes the adjacency of the occupied
processors in the 2D mesh. To illustrate the contrast between these objectives,
consider the example above. By searching for the lowest communication cost, all
of the 5 selected tasks: T0, T1, T2, T3 and T4 are assigned in contiguous processors,
as follows: T0 task is assigned to the sub-mesh < 4, 0 >< 5, 2 > regardless of the
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processor to < 4, 2 >, the T1 task is assigned to the sub-mesh < 2, 0 >< 3, 1 >,
the task T2 is assigned to the sub-mesh < 0, 5 >< 2, 6 > regardless of the
processor to < 2, 5 >, the task T3 is assigned in submesh < 0.2 >< 1, 3 >, and
T4 task is assigned to the sub-mesh < 6, 3 >< 7, 4 > regardless of the processor
to < 7, 4 >. If the proposed method detects the increase of starvation in the
system, the T5 task will be assigned to mesh with the task T1 or to task T3 that
is selected to occupy all of the processors, after a search in the queue and to
avoid external fragmentation; in this way the 29 free processors in the mesh will
remain busy. If targets 3 and 5 are opposed one can deduce that to assign the
task T1 or T3 and T5, the use of processors in the mesh is maximized, but the
adjacency between processors is minimized, and in contrast, if the set of 5 tasks
is assigned, the adjacency between processors is maximized, but an 8 processor
external fragmentation occurs.

Objective 1 minimizes allocations to the mesh of processors, runs counter to
objective 5, which maximizes the adjacency between processors. The contrast
between these two objectives appears when you intend to assign a large number
of tasks in the mesh of processors, and processors to which tasks are assigned are
not close enough together or contiguous, to avoid producing very high commu-
nication costs. If we consider assigning the set of 5 tasks, T0, T1, T2, T3 and T4,
the number of assignments made to the mesh is minimized, but if the positions
of the free processors in the mesh are adjacent, occur tasks will be assigned to
the the mesh in a very disjointed way, causing the adjacency of processors to be
minimal and communication costs between tasks to be very high.

Objective 2 which seeks to minimize the waiting time of tasks in the queue,
runs counter to the objective of maximizing the adjacency between processors.
Using the same example in the previous section and considering that the objective
2, sets to minimize the waiting time of tasks in the queue, upon assigning the
largest number of tasks in the mesh the wait time fora set of tasks is minimized.
In the allocation that occurs at time t, fewer jobs wait in a queue. For such cases
if two objects are a�ected simultaneously by a third objective, and we manage
to improve them, the algorithm will decide, based on this option when planning
and allocating, considering the generated cost involved in external fragmentation
and increased task starvation.

Objective 4, which aims to minimize the starvation of tasks, runs counter to
the objective 5, which maximizes the adjacency between processors. The decision
to allocate a greater number of tasks to minimize waiting times and maximize
the use of processors, seems like a viable option, but if we consider a third goal
in con�ict that tries to reduce task starvation in the system, we �nd then that
we are in favor of two objectives (2 and 3), and sacri�ce also 2 (objectives 4
and 5).

Based on the explained examples, we have found that maintaining a strict
control of tasks that �t in the mesh, to meet the proposed objectives, produces
exhausting searches in the queue, and calculations to locate tasks in the best
position in the mesh [12]. Rather than seeking the best positions of tasks in the
mesh, you should perform an analysis of the objectives, which seek to optimize,
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because when trying to locate submeshes of sizes that the tasks required for
the sole purpose of being contiguous, without considering a evaluation of other
objectives, can lead to poor results in response times and system performance.

Based on the above explanations, in this paper a scale of priorities for the
objectives is made, to be considered during the planning and allocation of tasks
in multicomputers systems. It is noted that this scale of priorities, is considered
in the algorithm proposed in this paper, and with this the results explained in
the section of results were obtained.

6 Scale of Priorities of the Objectives

This paper presents a strati�cation of the proposed objectives, based on the
results obtained with the algorithm UMDA and observations made in the above
experimentation have been performed in order to determine the best allocations,
should similar or identical l values be found when compared to those of objec-
tive's rankings.

Strati�cation proposal is as follows:

1. Objective 5, which sets to maximize adjacency between processors, is con-
sidered the major goal in the allocation for �ve situations that arise during
task assignments to the mesh of processors, in experiments: the �rst factor to
consider is the communication time tasks consume during execution, because
the non-adjacent processors generate very high communication costs and
even more when to perform tasks that require large quantities of processors
within the mesh. Although the search for free submeshes is a tedious process
and consumes time from the processor, it is a task that should be extensive
at any time.

2. Objective 3, maximize the use of processors to reduce external fragmentation,
is considered secondly because of its importance in the allocation of the
processors in the mesh. It is importance, is that it serves as a support for
Objective 1, the experiments conducted allow us to observe that in order to
maximize the use of processors, allocations should be made in the greater
number of processors that are adjacent within the mesh of processors. To
meet this objective, the algorithm that makes �nding free submeshes must
be big enough.

3. Objective 4, minimize task starvation, it is located on the third level of
importance, because being able to meet the two prior objectives this allows
a safe handling of tasks, that require large numbers of processors in the
mesh, thus avoiding task starvation. If the free search algorithm submeshes
provides sets of adjacent free processors, it is possible to avoid task starvation
upon placing them within the mesh.

4. Objective 1, minimize the number of assignments to the mesh of processors,
i.e. minimize the number of plani�cations, that the algorithm must perform
with the tasks that remain in the mesh, it is considered as the fourth objective
of importance to the evaluation and is considered to include Objective 2,
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because achieving being able to minimize the number of assignments, to the
mesh of processors reduces the time that tasks waiting in the queue

5. Objective 2 is considered a level 5 of importance, which sets to decrease the
waiting time of tasks in the queue.

7 Results

The experiments were performed with di�erent workloads in the Liebres In-
teligentes [14] system and with di�erent sizes in the queue. Size loads of 256,
512, 1024 and 2048 tasks are considered in the system. The lengths of the queue
are carried out in 10, 20, 30 and 50 tasks with their respective subtasks. The
number of subtasks for each task is 255 at most, considering that the size of
the mesh of processors is < 16× 16 >. In �gure 2, the results obtained for each
objective function are shown. For reasons of space, only the loads on the system
and the values obtained for the objective function are shown, up to 800 tasks.

Fig. 2. Experiment 1, the chart shows the values obtained for the objective functions

In the X coordinate, di�erent system loads are shown and in the Y coordinate
obtained values of the objective functions are given. The performance of the
functions, shown at the bottom of the graph, identify the symbol used for each
function, the order of the functions is ascending, not by degree of importance.

In the following paragraphs the results for each objective, and the impact
they have over the functions of planning and allocation of tasks are explained.
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The values for function 5, maximize adjacency between processors that seek
to assign tasks with the highest degree of contiguity, show that with values of
less than 100 task workloads, no acceptable values are had, but as the number of
task execution increases, values signi�cantly improve. The function is observed
in this part, the number of subtasks processed exceeds the average, ie exceeds
128 subtasks task.

Function 4, minimizing starvation task has a high tendency, because the
tasks that are to be processed contain a large number of subtasks, causing fewer
tasks with subtasks to be addressed quick through the system. As large tasks
are evicted, starvation tends to stabilize at acceptable levels causing a greater
�uency in job processing.

The 3rd function, maximizes the use of processors, considered one of the
most important functions for the system, it has a tendency to group values,
with the results of the function 5, but as the number of tasks to be processed
increases, there is a dispersion in a middle point whose tendencies show that upon
obtaining higher adjacency the use of processors decreases, especially when the
system starts to process jobs with a large number of subtasks.

Function 2, decreases the time that a task expected to be attended in line,
shows a very clear trend, when tasks are processed with fewer resource require-
ments, waiting times are very short, due to the planning carried out by the
algorithm . Otherwise, when the tasks are processed containing a large number
of requirements, waiting times are higher, which undoubtedly, upon increasing
the number of resources, this trend is easily improved. This is shown in the graph
when loads between 200 and 400 jobs are processed; the values of the functions
are �red very easily.

Finally, function 1, which seeks to minimize the number of assignments that
the algorithm performs, shows very poor booting trends, but as the implemen-
tation progresses, their values are signi�cantly improved. It�s tendency with the
values of the function 2, makes it a dependent function that takes a curve to
the values acquired in function 2. As function 2 has better values that represent
a decrease of time a task has to wait to be served in the queue, the number
of assignments that the allocator algorithm performs is substantially reduced.
Function 2 in conjunction with function 1, has a high degree of importance on
the results that the system puts out, so it is important to consider them as
priorities.

Figure 3 shows another exemplifying embodiment of the system. With a
greater number of tasks in the system, value trends are similar to the previous
graph. With this example, it is intended that the functions obtain values that
correspond to a greater load in the system. The analysis that is done in this
experiment, allows us to observe that the functionality of the planning algorithm
is feasible when used with heavy system loads.
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Fig. 3. Experiment 2, the chart shows the values obtained for the objective functions

8 Conclusions

Multicomputers systems are a viable option for parallel processing, because of
their growth in terms of computing power and distributed storage. The inherent
problems associated with their architecture are the planning and allocation of
tasks. For allocating tasks to the mesh of processors many techniques based on
di�erent strategies have been proposed through: geometric �gures that move
across the screen to locate the free submeshes, adjustments to free submesh
application sizes and techniques based on random assignments. Most of these
techniques make use of planning policies, based on the �rst to arrive is the �rst
to be served (FIFO First Input, First Output), that is, pre-planning is not used
in the queue, furthermore it only seeks to solve one problem: the one that deals
with adjacent or contiguous allocation to be able to reduce message passing
between tasks and subtasks.

The method presented in this document deals with the problem of planning
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and allocation of tasks on a multicomputer system as a multiobjective problem,
conducting an analysis of how each goal impacts system performance, by means
of using an evolutionary algorithm. The objective of this analysis is to show the
values that functions present when goals are opposed, both in the planning and
allocation of the mesh processors.

With the obtained results using the Liebres Inteligentes multicomputer sys-
tem it is possible to deduce that in order to evaluate an allocation technique
of processors in a mesh, it is necessary that this technique evaluates at least 5
di�erent objectives, because in this way, you can determine that not only one
problem will be solved, but a set of values that balance a solution will be had.
An approach that seeks to solve only one objective, is not feasible, for example,
one that seeks to solve task adjacency and allows system response time is not
considered in the formulation of the solution.

Finally, it is very important to mention the work that is to be performed by
the free submeshes search algorithm, within the mesh of processors, because it
is what supports, monitors and ful�lls the most important objectives within the
proposed strati�cation in this paper research.
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